Class 9 Mathematics Chapter 1: Matrices and Determinants,

Net Woth Insightful
0

 Here are concise notes for Class 9 Mathematics Chapter 1: Matrices and Determinants, based on the Punjab Board curriculum.


Chapter 1: Matrices and Determinants

1. Introduction

  • A matrix is a rectangular arrangement of numbers in rows and columns, enclosed in brackets.
  • Order of a Matrix: It is given by the number of rows (m) and columns (n) in the form m×nm \times n.
    Example: A 2×32 \times 3 matrix has 2 rows and 3 columns.

2. Types of Matrices

  1. Row Matrix: A matrix with only one row.
    Example: [1,2,3][1, 2, 3] (Order: 1×31 \times 3)

  2. Column Matrix: A matrix with only one column.
    Example: [456]\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} (Order: 3×13 \times 1)

  3. Square Matrix: A matrix where the number of rows equals the number of columns (m=nm = n).
    Example: [1234]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}

  4. Diagonal Matrix: A square matrix where all elements except the diagonal ones are zero.
    Example: [5008]\begin{bmatrix} 5 & 0 \\ 0 & 8 \end{bmatrix}

  5. Zero Matrix: All elements are zero.
    Example: [0000]\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

  6. Identity Matrix: A square matrix where all diagonal elements are 1, and other elements are 0.
    Example: [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}


3. Operations on Matrices

  1. Addition: Matrices of the same order can be added by adding corresponding elements.
    Example:

    [1234]+[5678]=[681012]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}
  2. Subtraction: Similar to addition, subtract corresponding elements.

  3. Multiplication by a Scalar: Multiply each element by a constant.
    Example:
    3×[1234]=[36912]3 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}


4. Determinants

  1. Definition: The determinant is a scalar value that can be computed from a square matrix.
    For a 2×22 \times 2 matrix:

    A=[abcd],det(A)=adbcA = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \text{det}(A) = ad - bc
  2. Properties of Determinants:

    • If any row or column is all zeros, the determinant is zero.
    • Swapping two rows or columns changes the sign of the determinant.

5. Applications

  • Used in solving systems of linear equations.
  • Essential in advanced mathematics and engineering.

Let me know if you need detailed solutions to exercises or more examples!

Tags
  • Newer

    Class 9 Mathematics Chapter 1: Matrices and Determinants,

Post a Comment

0Comments

Post a Comment (0)